By the end of this lesson, you will:
Moving from prototype prompts to production systems requires a fundamental shift in thinking. You're not just crafting prompts-you're building critical infrastructure that teams depend on.
Level 1: Ad-hoc Prompts
├── Individual developers crafting custom prompts
├── No standardization or reuse
├── Manual testing and debugging
└── Limited scalability
Level 2: Template Systems
├── Reusable prompt templates
├── Basic version control
├── Simple testing frameworks
└── Team collaboration tools
Level 3: Managed Platforms
├── Centralized prompt libraries
├── Automated testing pipelines
├── Performance monitoring
└── A/B testing infrastructure
Level 4: Enterprise Orchestration
├── Multi-model routing
├── Intelligent fallbacks
├── Real-time optimization
├── Global governance
└── Compliance and auditing
Key Production Requirements:
interface PromptTemplate {
id: string;
name: string;
description: string;
category: string;
version: string;
author: string;
tags: string[];
template: string;
variables: TemplateVariable[];
examples: TemplateExample[];
metadata: TemplateMetadata;
}
interface TemplateLibrary {
// Core development templates
development: {
codeGeneration: PromptTemplate[];
debugging: PromptTemplate[];
testing: PromptTemplate[];
documentation: PromptTemplate[];
};
// Business domain templates
domains: {
ecommerce: PromptTemplate[];
healthcare: PromptTemplate[];
finance: PromptTemplate[];
education: PromptTemplate[];
};
// Specialized function templates
specialized: {
dataAnalysis: PromptTemplate[];
security: PromptTemplate[];
performance: PromptTemplate[];
architecture: PromptTemplate[];
};
}
Template Example:
const crudApiTemplate: PromptTemplate = {
id: 'crud-api-v2.1',
name: 'CRUD API Generator',
description: 'Generate complete CRUD API with validation and error handling',
category: 'development.api',
version: '2.1.0',
author: 'platform-team',
tags: ['api', 'crud', 'validation', 'enterprise'],
template: `
Create a {framework} CRUD API for {entity} with:
REQUIREMENTS:
- RESTful endpoints: GET, POST, PUT, DELETE /{resource}
- Input validation using {validation_library}
- Error handling with proper HTTP status codes
- {database} integration with connection pooling
- API documentation with {docs_framework}
- Authentication using {auth_method}
- Rate limiting: {rate_limit} requests/minute
- Logging with request correlation IDs
SECURITY:
- SQL injection prevention
- XSS protection
- CORS configuration
- Input sanitization
PERFORMANCE:
- Response caching for GET requests
- Pagination for list endpoints
- Connection pooling
- Query optimization
Include comprehensive tests and deployment configuration.
`,
variables: [
{ name: 'framework', type: 'select', options: ['Express.js', 'FastAPI', 'Spring Boot'] },
{ name: 'entity', type: 'string', required: true },
{ name: 'resource', type: 'string', derived: 'pluralize(entity)' },
{ name: 'validation_library', type: 'string', default: 'Joi' },
{ name: 'database', type: 'select', options: ['PostgreSQL', 'MySQL', 'MongoDB'] },
{ name: 'docs_framework', type: 'string', default: 'OpenAPI/Swagger' },
{ name: 'auth_method', type: 'string', default: 'JWT Bearer tokens' },
{ name: 'rate_limit', type: 'number', default: 1000 }
],
examples: [
{
input: { framework: 'Express.js', entity: 'User', database: 'PostgreSQL' },
description: 'User management API with Express and PostgreSQL'
}
],
metadata: {
estimatedTokens: 1200,
complexity: 'high',
executionTime: '45s',
successRate: 0.94
}
};
class EnterpriseTemplateEngine {
private templates: Map<string, PromptTemplate>;
private cache: Map<string, string>;
private validator: TemplateValidator;
constructor() {
this.templates = new Map();
this.cache = new Map();
this.validator = new TemplateValidator();
}
async renderTemplate(
templateId: string,
variables: Record<string, any>,
options: RenderOptions = {}
): Promise<string> {
const template = this.getTemplate(templateId);
// Validate variables
const validation = this.validator.validate(template, variables);
if (!validation.isValid) {
throw new ValidationError(validation.errors);
}
// Check cache first
const cacheKey = this.generateCacheKey(templateId, variables);
if (this.cache.has(cacheKey)) {
return this.cache.get(cacheKey)!;
}
// Render template
let rendered = template.template;
// Process variables
for (const [key, value] of Object.entries(variables)) {
const placeholder = `{${key}}`;
rendered = rendered.replace(new RegExp(placeholder, 'g'), value);
}
// Process derived variables
rendered = this.processDerivedVariables(template, rendered, variables);
// Apply optimizations
if (options.optimize) {
rendered = await this.optimizePrompt(rendered);
}
// Cache result
this.cache.set(cacheKey, rendered);
return rendered;
}
async optimizePrompt(prompt: string): Promise<string> {
// Token optimization
const compressed = this.compressTokens(prompt);
// Structure optimization
const structured = this.optimizeStructure(compressed);
// Performance validation
const validated = await this.validatePerformance(structured);
return validated;
}
}
interface PromptVersion {
version: string; // e.g., "2.1.3"
prompt: string;
changelog: string;
performance: PerformanceMetrics;
compatibility: CompatibilityInfo;
rollbackPlan: RollbackStrategy;
}
class PromptVersionManager {
private versions: Map<string, PromptVersion[]>;
private activeVersions: Map<string, string>;
private migrations: Map<string, MigrationPlan>;
async deployVersion(
promptId: string,
newVersion: PromptVersion,
deploymentStrategy: 'canary' | 'blue-green' | 'rolling'
): Promise<DeploymentResult> {
// Pre-deployment validation
const validation = await this.validateDeployment(promptId, newVersion);
if (!validation.passed) {
return { success: false, errors: validation.errors };
}
// Execute deployment strategy
switch (deploymentStrategy) {
case 'canary':
return await this.canaryDeploy(promptId, newVersion);
case 'blue-green':
return await this.blueGreenDeploy(promptId, newVersion);
case 'rolling':
return await this.rollingDeploy(promptId, newVersion);
}
}
async canaryDeploy(promptId: string, newVersion: PromptVersion): Promise<DeploymentResult> {
// Deploy to 5% of traffic
await this.routeTraffic(promptId, newVersion.version, 0.05);
// Monitor for 1 hour
const metrics = await this.monitorPerformance(promptId, '1h');
// Evaluate success criteria
if (metrics.errorRate < 0.01 && metrics.qualityScore > 0.9) {
// Gradually increase traffic
await this.gradualRollout(promptId, newVersion.version);
return { success: true, strategy: 'canary', rolloutTime: '4h' };
} else {
// Rollback
await this.rollback(promptId);
return { success: false, reason: 'Metrics did not meet criteria' };
}
}
}
# .github/workflows/prompt-ci-cd.yml
name: Prompt CI/CD Pipeline
on:
push:
branches: [main]
paths: ['prompts/**']
pull_request:
paths: ['prompts/**']
jobs:
validate:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- name: Validate Prompt Syntax
run: |
npm run validate:prompts
- name: Run Prompt Tests
run: |
npm run test:prompts
- name: Performance Benchmarks
run: |
npm run benchmark:prompts
- name: Security Scan
run: |
npm run security:prompts
deploy-staging:
needs: validate
if: github.ref == 'refs/heads/main'
runs-on: ubuntu-latest
steps:
- name: Deploy to Staging
run: |
kubectl apply -f k8s/staging/
- name: Integration Tests
run: |
npm run test:integration
deploy-production:
needs: deploy-staging
runs-on: ubuntu-latest
steps:
- name: Production Deployment
run: |
kubectl apply -f k8s/production/
- name: Health Check
run: |
npm run healthcheck:production
class ResilientPromptExecutor {
private fallbackChain: PromptStrategy[];
private circuitBreaker: CircuitBreaker;
private retryPolicy: RetryPolicy;
async executeWithFallback(
prompt: string,
context: ExecutionContext
): Promise<ExecutionResult> {
for (const strategy of this.fallbackChain) {
try {
// Check circuit breaker
if (this.circuitBreaker.isOpen(strategy.id)) {
continue;
}
// Execute with retry policy
const result = await this.retryPolicy.execute(
() => strategy.execute(prompt, context)
);
// Record success
this.circuitBreaker.recordSuccess(strategy.id);
return result;
} catch (error) {
// Record failure
this.circuitBreaker.recordFailure(strategy.id);
// Log error with context
this.logger.error('Strategy failed', {
strategyId: strategy.id,
prompt: prompt.substring(0, 100),
error: error.message,
context
});
// Continue to next strategy
}
}
// All strategies failed
throw new AllStrategiesFailedError('No fallback strategy succeeded');
}
}
// Fallback strategy examples
const fallbackStrategies: PromptStrategy[] = [
new PrimaryModelStrategy('gpt-4'),
new FallbackModelStrategy('gpt-3.5-turbo'),
new CachedResponseStrategy(),
new DefaultResponseStrategy()
];
interface ErrorRecoveryPlan {
errorType: string;
recoveryActions: RecoveryAction[];
escalationPath: EscalationLevel[];
userCommunication: UserMessage;
}
class ErrorRecoveryOrchestrator {
private recoveryPlans: Map<string, ErrorRecoveryPlan>;
async handleError(error: Error, context: any): Promise<RecoveryResult> {
const errorType = this.classifyError(error);
const plan = this.recoveryPlans.get(errorType);
if (!plan) {
return this.executeDefaultRecovery(error, context);
}
// Execute recovery actions in sequence
for (const action of plan.recoveryActions) {
try {
const result = await action.execute(error, context);
if (result.success) {
return result;
}
} catch (recoveryError) {
this.logger.warn('Recovery action failed', {
action: action.name,
error: recoveryError.message
});
}
}
// Escalate if recovery failed
return this.escalate(error, context, plan.escalationPath);
}
}
// Error classification and recovery
const errorRecoveryPlans: ErrorRecoveryPlan[] = [
{
errorType: 'TokenLimitExceeded',
recoveryActions: [
new CompressPromptAction(),
new SplitRequestAction(),
new UseFallbackModelAction()
],
escalationPath: ['team-lead', 'engineering-manager'],
userCommunication: {
message: 'Request is being processed with optimized parameters',
showProgress: true
}
},
{
errorType: 'ModelUnavailable',
recoveryActions: [
new UseFallbackModelAction(),
new UseCachedResponseAction(),
new QueueForLaterAction()
],
escalationPath: ['on-call-engineer', 'infrastructure-team'],
userCommunication: {
message: 'Using backup system. Results may take longer than usual.',
estimatedDelay: '30s'
}
}
];
class PromptObservabilityPlatform {
private metricsCollector: MetricsCollector;
private alertManager: AlertManager;
private dashboard: Dashboard;
async collectMetrics(execution: PromptExecution): Promise<void> {
// Performance metrics
await this.metricsCollector.record('prompt.execution.duration', {
value: execution.duration,
tags: {
promptId: execution.promptId,
model: execution.model,
success: execution.success
}
});
// Quality metrics
await this.metricsCollector.record('prompt.output.quality', {
value: execution.qualityScore,
tags: {
promptId: execution.promptId,
evaluator: 'automated'
}
});
// Cost metrics
await this.metricsCollector.record('prompt.execution.cost', {
value: execution.cost,
tags: {
promptId: execution.promptId,
tokenCount: execution.tokenCount
}
});
// Business metrics
await this.metricsCollector.record('prompt.business.impact', {
value: execution.businessValue,
tags: {
feature: execution.feature,
userId: execution.userId
}
});
}
setupAlerts(): void {
// Performance alerts
this.alertManager.createAlert({
name: 'High Prompt Latency',
condition: 'avg(prompt.execution.duration) > 10000ms over 5min',
severity: 'warning',
channels: ['slack-engineering', 'pagerduty']
});
// Quality alerts
this.alertManager.createAlert({
name: 'Quality Degradation',
condition: 'avg(prompt.output.quality) < 0.8 over 10min',
severity: 'critical',
channels: ['slack-ai-team', 'email-leads']
});
// Cost alerts
this.alertManager.createAlert({
name: 'Budget Overrun',
condition: 'sum(prompt.execution.cost) > monthly_budget * 0.9',
severity: 'high',
channels: ['slack-finance', 'email-management']
});
}
}
import { trace, context, propagation } from '@opentelemetry/api';
class DistributedPromptTracing {
private tracer = trace.getTracer('prompt-engineering');
async executeWithTracing(
promptId: string,
input: any,
executor: PromptExecutor
): Promise<any> {
return await this.tracer.startActiveSpan(`prompt-execution-${promptId}`, async (span) => {
try {
// Set span attributes
span.setAttributes({
'prompt.id': promptId,
'prompt.input.length': JSON.stringify(input).length,
'execution.timestamp': Date.now()
});
// Context preprocessing
const preprocessed = await this.tracePreprocessing(input);
// Template rendering
const rendered = await this.traceTemplateRendering(promptId, preprocessed);
// Model execution
const result = await this.traceModelExecution(rendered);
// Post-processing
const processed = await this.tracePostProcessing(result);
// Set result attributes
span.setAttributes({
'prompt.output.length': JSON.stringify(processed).length,
'execution.success': true
});
return processed;
} catch (error) {
// Record error
span.recordException(error);
span.setStatus({ code: trace.SpanStatusCode.ERROR });
throw error;
} finally {
span.end();
}
});
}
private async traceModelExecution(prompt: string): Promise<any> {
return await this.tracer.startActiveSpan('model-execution', async (span) => {
const startTime = Date.now();
try {
const result = await this.callModel(prompt);
span.setAttributes({
'model.tokens.input': result.usage.promptTokens,
'model.tokens.output': result.usage.completionTokens,
'model.cost': this.calculateCost(result.usage),
'model.duration': Date.now() - startTime
});
return result;
} finally {
span.end();
}
});
}
}
class PromptRouter {
private routingStrategies: Map<string, RoutingStrategy>;
private loadBalancer: LoadBalancer;
private cache: DistributedCache;
async route(request: PromptRequest): Promise<PromptResponse> {
// Determine optimal routing strategy
const strategy = this.selectStrategy(request);
// Check cache first
const cacheKey = this.generateCacheKey(request);
const cached = await this.cache.get(cacheKey);
if (cached && this.isCacheValid(cached, request)) {
return cached;
}
// Route to optimal endpoint
const endpoint = await strategy.selectEndpoint(request);
const response = await this.executeRequest(endpoint, request);
// Cache successful responses
if (response.success && request.cacheable) {
await this.cache.set(cacheKey, response, request.cacheTTL);
}
return response;
}
selectStrategy(request: PromptRequest): RoutingStrategy {
if (request.priority === 'high') {
return this.routingStrategies.get('performance-optimized');
}
if (request.budget === 'low') {
return this.routingStrategies.get('cost-optimized');
}
if (request.complexity === 'high') {
return this.routingStrategies.get('quality-optimized');
}
return this.routingStrategies.get('balanced');
}
}
// Routing strategies
const routingStrategies = {
'performance-optimized': new PerformanceOptimizedStrategy([
new GPT4TurboEndpoint(),
new ClaudeInstantEndpoint(),
new LocalModelEndpoint()
]),
'cost-optimized': new CostOptimizedStrategy([
new GPT35TurboEndpoint(),
new ClaudeHaikuEndpoint(),
new OpenSourceEndpoint()
]),
'quality-optimized': new QualityOptimizedStrategy([
new GPT4Endpoint(),
new ClaudeOpusEndpoint(),
new PalmEndpoint()
])
};
# kubernetes/prompt-service-deployment.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
name: prompt-service
spec:
replicas: 3
selector:
matchLabels:
app: prompt-service
template:
metadata:
labels:
app: prompt-service
spec:
containers:
- name: prompt-service
image: prompt-service:v2.1.0
resources:
requests:
memory: "512Mi"
cpu: "250m"
limits:
memory: "2Gi"
cpu: "1000m"
env:
- name: REDIS_URL
valueFrom:
secretKeyRef:
name: redis-secret
key: url
- name: MODEL_ENDPOINTS
valueFrom:
configMapKeyRef:
name: model-config
key: endpoints
---
apiVersion: autoscaling/v2
kind: HorizontalPodAutoscaler
metadata:
name: prompt-service-hpa
spec:
scaleTargetRef:
apiVersion: apps/v1
kind: Deployment
name: prompt-service
minReplicas: 3
maxReplicas: 50
metrics:
- type: Resource
resource:
name: cpu
target:
type: Utilization
averageUtilization: 70
- type: Resource
resource:
name: memory
target:
type: Utilization
averageUtilization: 80
behavior:
scaleUp:
stabilizationWindowSeconds: 60
policies:
- type: Percent
value: 100
periodSeconds: 15
scaleDown:
stabilizationWindowSeconds: 300
policies:
- type: Percent
value: 10
periodSeconds: 60
class PromptSecurityManager {
private scanner: SecurityScanner;
private classifier: DataClassifier;
private sanitizer: InputSanitizer;
async validatePrompt(prompt: string, context: SecurityContext): Promise<SecurityValidation> {
// Scan for sensitive data
const sensitiveData = await this.scanner.detectSensitiveData(prompt);
if (sensitiveData.length > 0) {
return {
valid: false,
violations: sensitiveData,
recommendation: 'Remove or mask sensitive information'
};
}
// Check for malicious patterns
const maliciousPatterns = await this.scanner.detectMaliciousPatterns(prompt);
if (maliciousPatterns.length > 0) {
return {
valid: false,
violations: maliciousPatterns,
recommendation: 'Prompt contains potential security risks'
};
}
// Validate data classification
const classification = await this.classifier.classify(prompt);
if (!this.isAuthorized(context.user, classification)) {
return {
valid: false,
violations: ['Insufficient permissions for data classification'],
recommendation: 'Request appropriate access permissions'
};
}
return { valid: true, violations: [], recommendation: null };
}
async sanitizeInput(input: any): Promise<any> {
return this.sanitizer.sanitize(input, {
removeHtml: true,
removeScripts: true,
validateJson: true,
truncateLength: 10000
});
}
}
class PromptAuditSystem {
private auditLog: AuditLogger;
private complianceChecker: ComplianceChecker;
async auditPromptExecution(execution: PromptExecution): Promise<void> {
const auditEvent = {
timestamp: new Date(),
eventType: 'prompt-execution',
userId: execution.userId,
promptId: execution.promptId,
dataClassification: execution.dataClassification,
outcome: execution.success ? 'success' : 'failure',
metadata: {
tokenCount: execution.tokenCount,
cost: execution.cost,
duration: execution.duration
}
};
// Log audit event
await this.auditLog.log(auditEvent);
// Check compliance
const complianceResult = await this.complianceChecker.check(execution);
if (!complianceResult.compliant) {
await this.handleComplianceViolation(execution, complianceResult);
}
}
async generateComplianceReport(period: string): Promise<ComplianceReport> {
const events = await this.auditLog.query({ period });
return {
period,
totalExecutions: events.length,
sensitiveDataProcessed: events.filter(e => e.dataClassification === 'sensitive').length,
complianceViolations: events.filter(e => e.complianceViolations).length,
averageCost: this.calculateAverage(events, 'cost'),
topUsers: this.getTopUsers(events),
riskAssessment: await this.assessRisk(events)
};
}
}
System Performance:
Business Metrics:
Operational Excellence:
You now have the expertise to build and operate enterprise-grade prompt engineering systems. You understand:
Career Impact:
Next Steps:
With this knowledge, you're ready to transform how organizations leverage AI for software development at enterprise scale!