By the end of this lesson, you will:
Context is the hidden superpower that transforms AI from a simple text generator into an intelligent collaborator. While most developers focus on prompt wording, experts know that context engineering is the real game-changer.
🎯 Desired Output
╱───────────────────╲
╱ Specific ╲
╱ Task Context ╲
╱─────────────────────── ╲
╱ Domain Knowledge ╲
╱ & Constraints ╲
╱─────────────────────────────╲
System Context & Environment
The Foundation (System Context):
The Domain Layer (Domain Knowledge):
The Task Layer (Specific Context):
Instead of dumping all context at once, build it progressively:
Layer 1: System Context
I'm working on a Node.js microservices architecture with:
- Express.js for API routes
- PostgreSQL with Prisma ORM
- Redis for caching
- JWT authentication
- TypeScript throughout
- Jest for testing
Layer 2: Domain Context
This is an e-commerce platform handling:
- User accounts and authentication
- Product catalog with inventory
- Shopping cart and checkout flow
- Order processing and fulfillment
- Payment integration with Stripe
Layer 3: Task Context
I need to implement the shopping cart service that:
- Persists cart data across sessions
- Handles concurrent modifications
- Validates inventory before checkout
- Calculates taxes and shipping
- Integrates with our existing user service
Create reusable context templates:
Base Project Context (project-context.md
):
# Project Context Template
## Tech Stack
- **Frontend:** React 18 + TypeScript + Vite
- **Backend:** Node.js + Express + TypeScript
- **Database:** PostgreSQL + Prisma
- **Auth:** Auth0 JWT tokens
- **Deployment:** Docker + AWS ECS
- **Testing:** Jest + Cypress
## Architecture Patterns
- Clean Architecture with dependency injection
- Repository pattern for data access
- Service layer for business logic
- API Gateway pattern for external requests
- Event-driven communication between services
## Coding Standards
- ESLint + Prettier configuration
- Conventional commits
- 100% TypeScript strict mode
- Comprehensive error handling
- Security-first development
Usage in Prompts:
Following the context in project-context.md, create a user authentication service...
Build context that adapts to the current situation:
Smart Context Function:
function buildAIContext(operation, files, userInput) {
const context = {
system: getSystemContext(),
project: getProjectContext(),
current: getCurrentFileContext(files),
operation: getOperationContext(operation),
user: processUserInput(userInput)
};
return formatContextForAI(context);
}
// Usage
const prompt = buildAIContext('create-component', activeFiles, userRequest);
Implement memory that persists across interactions:
Conversation Memory Pattern:
CONVERSATION HISTORY:
Session: 2024-01-15 - Shopping Cart Feature
Previous Actions:
1. Created cart model with validation
2. Implemented add/remove item methods
3. Added inventory checking logic
Current Task: Implement cart persistence layer
Context: User wants Redis caching for performance
Code Evolution Tracking:
CODE EVOLUTION CONTEXT:
File: services/CartService.ts
Changes Made:
- v1.0: Basic in-memory cart operations
- v1.1: Added validation and error handling
- v1.2: Integrated with inventory service
Current Version: v1.2
Next: Add Redis persistence layer
Dependencies: Redis client, cart interface
Handle complex projects with multiple interdependent files:
Project Graph Context:
PROJECT CONTEXT GRAPH:
Current File: components/ShoppingCart.tsx
Dependencies:
├── hooks/useCart.ts (custom cart hook)
├── services/CartService.ts (business logic)
├── types/Cart.ts (TypeScript interfaces)
├── styles/Cart.module.css (component styles)
└── utils/CartValidation.ts (validation logic)
Related Files (2-hop dependencies):
├── services/InventoryService.ts
├── contexts/UserContext.tsx
└── api/cart-endpoints.ts
INSTRUCTIONS: When modifying ShoppingCart.tsx, ensure
compatibility with all listed dependencies and related files.
When working with large codebases, compress context efficiently:
Essential Context Extraction:
COMPRESSED PROJECT CONTEXT:
Architecture: React + Node.js microservices
Key Patterns: Repository pattern, dependency injection
Current Module: User management system
Related APIs: /users, /auth, /profiles
Data Models: User, Profile, AuthToken
Key Constraints: GDPR compliance, under 200ms response time
Selective Context Loading:
function getRelevantContext(currentTask, projectSize) {
if (projectSize > 1000) {
return getCompressedContext(currentTask);
} else {
return getFullContext(currentTask);
}
}
Measure your context effectiveness:
Context Quality Checklist:
✅ System information provided
✅ Domain knowledge included
✅ Task requirements clear
✅ Constraints specified
✅ Success criteria defined
✅ Examples provided
✅ Edge cases mentioned
✅ Dependencies identified
Test your context with different scenarios:
// Context testing scenarios
const testScenarios = [
{
name: "Simple CRUD operation",
context: "minimal",
expected: "basic implementation"
},
{
name: "Complex business logic",
context: "full",
expected: "comprehensive solution"
},
{
name: "Legacy code integration",
context: "historical",
expected: "compatible implementation"
}
];
function testContextEffectiveness(scenario) {
const context = buildContext(scenario.contextType);
const result = queryAI(context + scenario.task);
return evaluateResult(result, scenario.expected);
}
Create a centralized context management system:
class ContextRepository {
constructor() {
this.contexts = new Map();
this.templates = new Map();
this.history = [];
}
registerTemplate(name, template) {
this.templates.set(name, template);
}
buildContext(templateName, variables) {
const template = this.templates.get(templateName);
return this.interpolateContext(template, variables);
}
saveContextSnapshot(sessionId, context) {
this.contexts.set(sessionId, {
context,
timestamp: Date.now(),
version: this.getNextVersion()
});
}
getContextHistory(sessionId) {
return this.history.filter(h => h.sessionId === sessionId);
}
}
Automatically choose the right context for each situation:
class SmartContextSelector {
selectOptimalContext(task, projectInfo, userPreferences) {
const contextStrategy = this.analyzeTask(task);
switch(contextStrategy) {
case 'minimal':
return this.buildMinimalContext(projectInfo);
case 'comprehensive':
return this.buildFullContext(projectInfo);
case 'specialized':
return this.buildSpecializedContext(task, projectInfo);
default:
return this.buildAdaptiveContext(task, projectInfo);
}
}
analyzeTask(task) {
const complexity = this.calculateComplexity(task);
const scope = this.determineScope(task);
const dependencies = this.analyzeDependencies(task);
return this.selectStrategy(complexity, scope, dependencies);
}
}
Global Context
├── Organization Standards
│ ├── Security Policies
│ ├── Coding Guidelines
│ └── Architecture Principles
├── Project Context
│ ├── Tech Stack
│ ├── Business Domain
│ └── Team Conventions
└── Session Context
├── Current Files
├── Recent Changes
└── User Intent
const contextVersioning = {
v1: {
format: "simple text blocks",
capabilities: ["basic task description"]
},
v2: {
format: "structured sections",
capabilities: ["task + constraints + examples"]
},
v3: {
format: "hierarchical context tree",
capabilities: ["dynamic context selection", "memory persistence"]
}
};
function upgradeContextVersion(oldContext, targetVersion) {
return contextMigrations[targetVersion](oldContext);
}
Combine multiple context sources intelligently:
function fuseContextSources(sources) {
const fusion = {
system: mergeSystems(sources.map(s => s.system)),
domain: combineDomains(sources.map(s => s.domain)),
task: prioritizeTasks(sources.map(s => s.task)),
constraints: unionConstraints(sources.map(s => s.constraints))
};
return optimizeContextSize(fusion);
}
For large-scale applications:
Context Governance
Performance Optimization
Security Considerations
Context Monitoring Dashboard:
const contextMetrics = {
usage: {
totalRequests: 15420,
averageContextSize: '2.3KB',
cacheHitRate: '78%'
},
quality: {
relevanceScore: 8.7,
completenessScore: 9.1,
efficiencyScore: 8.3
},
performance: {
averageProcessingTime: '45ms',
memoryUsage: '1.2GB',
successRate: '94%'
}
};
You now understand that context is the secret weapon that transforms good prompts into extraordinary ones. With these techniques, you can:
Next: Learn how to combine context engineering with multi-step reasoning for even more powerful AI interactions!